Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Biotechnology ; (12): 2874-2896, 2023.
Artigo em Chinês | WPRIM | ID: wpr-981238

RESUMO

Glutamate receptor-like (GLR) is an important class of Ca2+ channel proteins, playing important roles in plant growth and development as well as in response to biotic and abiotic stresses. In this paper, we performed genome-wide identification of banana GLR gene family based on banana genomic data. Moreover, we analyzed the basic physicochemical properties, gene structure, conserved motifs, promoter cis-acting elements, evolutionary relationships, and used real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) to verify the expression patterns of some GLR family members under low temperature of 4 ℃ and different hormone treatments. The results showed that there were 19 MaGLR family members in Musa acuminata, 16 MbGLR family members in Musa balbisiana and 14 MiGLR family members in Musa itinerans. Most of the members were stable proteins and had signal peptides, all of them had 3-6 transmembrane structures. Prediction of subcellular localization indicated that all of them were localized on the plasma membrane and irregularly distributed on the chromosome. Phylogenetic analysis revealed that banana GLRs could be divided into 3 subclades. The results of promoter cis-acting elements and transcription factor binding site prediction showed that there were multiple hormone- and stress-related response elements and 18 TFBS in banana GLR. RT-qPCR analysis showed that MaGLR1.1 and MaGLR3.5 responded positively to low temperature stress and were significantly expressed in abscisic acid/methyl jasmonate treatments. In conclusion, the results of this study suggest that GLR, a highly conserved family of ion channels, may play an important role in the growth and development process and stress resistance of banana.


Assuntos
Musa/metabolismo , Filogenia , Ácido Abscísico/metabolismo , Temperatura , Estresse Fisiológico/genética , Hormônios/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica
2.
Chinese Journal of Biotechnology ; (12): 303-327, 2022.
Artigo em Chinês | WPRIM | ID: wpr-927713

RESUMO

Oolong tea is a semi-fermented tea with strong flavor, which is widely favored by consumers because of its floral and fruity aroma as well as fresh and mellow taste. During the processing of oolong tea, withering is the first indispensable process for improving flavor formation. However, the molecular mechanism that affects the flavor formation of oolong tea during withering remains unclear. Transcriptome sequencing was used to analyze the difference among the fresh leaves, indoor-withered leaves and solar-withered leaves of oolong tea. A total of 10 793 differentially expressed genes were identified from the three samples. KEGG enrichment analysis showed that the differentially expressed genes were mainly involved in flavonoid synthesis, terpenoid synthesis, plant hormone signal transduction and spliceosome pathways. Subsequently, twelve differentially expressed genes and four differential splicing genes were identified from the four enrichment pathways for fluorescence quantitative PCR analysis. The results showed that the expression patterns of the selected genes during withering were consistent with the results in the transcriptome datasets. Further analysis revealed that the transcriptional inhibition of flavonoid biosynthesis-related genes, the transcriptional enhancement of terpenoid biosynthesis-related genes, as well as the jasmonic acid signal transduction and the alternative splicing mechanism jointly contributed to the flavor formation of high floral and fruity aroma and low bitterness in solar-withered leaves. The results may facilitate better understanding the molecular mechanisms of solar-withering treatment in flavor formation of oolong tea.


Assuntos
Camellia sinensis/genética , Perfilação da Expressão Gênica , Folhas de Planta , Proteínas de Plantas/metabolismo , Paladar , Chá , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA